
 86

������������	
���������	������
�����
�������	��
������������������

�
�

���������	��
	�
���
���	��	����	
�

�����	
���������������	
�
����������
������������������

��
��	 �����!"##��
$#�%�&�!�&�"''��

�����(��
)���
����	��

*��+����������������
*����,����	-�.����/�	���

	�����������
���0�������
��
1
���� ����	-����-	�
���

��
������,�������!�#���
$#�&�"�&!��%2�2�

(���)� ��� ,�����
�
�

ABSTRACT
This paper presents three sets of classification schemes for
processes, properties, and transitions that can be used to assist in
the analysis of real-time systems. These classification schemes
are discussed in the context of ASTRAL, which is a formal
specification language for real-time systems. Eight testbed
systems were specified in ASTRAL, and their proofs were
performed to determine proof patterns that occur most often. The
specifications were then examined in an attempt to derive specific
characteristics that could be used to statically identify each pattern
within a specification. Once the classifications were obtained,
they were then used to provide systematic guidance for analyzing
real-time systems by directing the prover to the proof techniques
most applicable to each proof pattern. This paper presents the set
of classification schemes that were developed and discusses how
they can be used to assist the proof process.

Keywords
Formal methods, formal specification and verification, real-time
systems, ASTRAL, system classification, analysis guidance,
timing requirements.

1. INTRODUCTION
Real-time systems are distributed, concurrent, and reactive, which
makes the proofs of their critical requirements extremely complex.
These proofs are most often discharged based solely on the
ingenuity of the human prover. To make the analysis of real-time
systems less ad hoc and less dependent on human ingenuity, it is
desirable to provide a methodology that can be used to direct the
proofs in a systematic fashion. To develop such a methodology, it
is necessary to define a set of classification schemes that can be
used to differentiate between various specification and proof

styles. These classifications are used to separate specifications
with different patterns as well as separating individual proofs into
simpler pieces. It is critical not only that different classifications
result in different proof styles, but also that the classifications are
statically recognizable so that they can be consulted before
analysis begins. When a user analyzes a real-time system, system
entities can be classified appropriately and then the guidelines for
each applicable classification can be consulted to direct the
proofs. These guidelines include which analysis step should be
performed next, how it can be performed efficiently using the
appropriate tools and techniques, and how the results of different
approaches can be used to complement each other.

In order to determine the classification schemes that are most
useful during analysis, a set of testbed systems was developed.
These systems consist of a variety of different process and
property types. Each system was specified in ASTRAL [2], which
is a formal specification language for real-time systems. The
proofs of each system were performed to determine the proof
patterns that occurred most often, which could then be reused in
the proofs of other systems based on the classification schemes.
The specifications that comprised the testbed varied from the
specification of a distributed mutual exclusion protocol to a phone
switching system to a production facility. More specifically, the
specifications include a number of standard benchmark systems:
a bakery specification that describes the distributed mutual
exclusion algorithm of [13], a cruise control system based on the
description in [20], an elevator control system adapted from [6], a
production cell specification based on the description in [14], a
railroad crossing system based on the description in [7], and a
stoplight specification adapted from the stoplight control system
described in [6]. The testbed also includes the specification of an
electronic scoring system for Olympic boxing based on a
description of the system taken from the official 1996 Olympic
web site [17]. Finally, the testbed includes a long distance
telephony specification taken from [2].

These specifications represent a wide variety of real-time systems.
There are small systems such as the railroad crossing and large
systems such as the stoplight control system. There are simple
systems such as the cruise control and complex systems such as
the phone system. There are open systems such as the scoring
system and closed systems such as the bakery algorithm. There

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.

86

 2

are deterministic systems such as the production cell and
nondeterministic systems such as the elevator control system.
Finally, there are systems where assumptions are not needed to
complete the proofs such as the stoplight control system and
systems where assumptions are needed such as the phone system.
Given that the testbed systems represent such a wide variety of
real-time systems, it is expected that the classifications developed
for these systems are applicable to most systems in general. In
addition to their usefulness during the development of the
systematic analysis methodology, as a side result, these systems
demonstrate the flexibility and expressiveness of ASTRAL. The
complete specifications of the testbed systems can be found in [9].

This paper presents the classification schemes that were
developed based on the set of testbed systems. Although these
classification schemes and proof techniques were developed based
on ASTRAL specifications, it is felt that the results for ASTRAL
are applicable to many other real-time specification languages by
just taking into account the differences in terminology and syntax.
Classification schemes were developed for processes, properties,
and transitions. Each scheme is presented as well as how each
classification is of assistance during the proof process. Due to
space limitations, the proof techniques are discussed at a high
level. For complete technical details on the systematic analysis
methodology, see [11]. The next section gives a brief overview of
the ASTRAL language. Sections 3, 4, and 5 discuss the
classification schemes for processes, properties, and transitions,
respectively, and how each assists analysis. Section 6 presents
some related work in classification and systematic guidance.
Finally, some conclusions and future directions for this research
are discussed in section 7.

2. ASTRAL OVERVIEW
In ASTRAL, a real-time system is described as a collection of
state machine specifications, where each specification represents a
process type of which there may be multiple, statically generated,
instances. Each process instance in the system executes
concurrently and asynchronously with all the other process
instances. Additionally, a global specification contains
declarations for types and constants that are shared among more
than one process type, as well as assumptions about the global
environment and critical requirements for the whole system.

An ASTRAL process specification consists of a sequence of
levels. Each level is an abstract data type view of the process
being specified. The first (“top level”) view is a very abstract
model of what constitutes the process (types, constants, variables),
what the process does (state transitions), and the critical
requirements the process must meet (invariants and schedules).
Lower levels are increasingly more detailed with the lowest level
corresponding closely to high-level code. Figure 1 shows one of
the process types of the Olympic boxing scoring system. The
Judge process represents the scoring panel that judges use to keep
score of the boxing match.

The process being specified is thought of as being in various
states, with one state differentiated from another by the values of
its state variables, which can be changed only by means of state
transitions. Every process can export both state variables and
transitions; as a consequence, the former are readable by other
processes while the latter are executable from the external

environment. Processes communicate by broadcasting the values
of exported variables and the start and end times of exported
transitions. In the Judge process, the Score_Card variable and the
Score transition are exported. Judge imports the global constant
Window, the process ID Time_Keeper, and the global types
Pos_Real, Non_Negative, and Boxer from the global
specification. In addition, the In_Round variable is imported
from the Time_Keeper instance of the Timer process type.

Transitions are described in terms of entry and exit assertions by
using an extension of first-order predicate calculus. Transition
entry assertions describe the constraints that state variables must
satisfy in order for the transition to fire, while exit assertions
describe the constraints that are fulfilled by state variables after
the transition has fired. An explicit non-null duration is
associated with each transition.

Each transition is either a local transition or an exported
transition. A local transition is enabled when its entry assertion is
satisfied. An exported transition, however, is only enabled when
both its entry assertion is satisfied and when it has been called
(i.e. invoked) from the external environment. Transitions are
executed as soon as they are enabled assuming no other transition
for that process instance is executing. If two or more transitions
are enabled simultaneously, a nondeterministic choice will occur
and only one of them will execute. In the Judge process, the
Score transition is enabled when it has been called from the
external environment but not yet serviced, when the match is in a
round, and when the last time Score fired was more than Window
time units in the past.

In addition to specifying system state (through process variables
and constants) and system evolution (through transitions), an
ASTRAL specification also defines system critical requirements
and assumptions about the behavior of the environment that
interacts with the system. The behavior of the environment is
expressed by means of environment clauses, which describe
assumptions about the pattern of invocation of exported
transitions. Critical requirements are expressed by means of
invariants and schedules. Invariants represent requirements that
must hold in every state reachable from the initial state, no matter
what the behavior of the external environment is, while schedules
represent additional properties that must be satisfied provided that
the external environment behaves as assumed.

Invariants and schedules are proved over all possible executions
of a system. A system execution is a set of process executions
that contains one process execution for each process instance in
the system. A process execution for a given process instance is a
history of events on that instance. The value of an expression E at
a time t1 in the history can be obtained using the past operator,
past(E, t1), such that t1 ≤ now, where now is a special global
variable used to denote the current time in the system. There are
four types of events that may occur in an ASTRAL history. A call
event, Call(tr1, t1), occurs for an exported transition tr1 at a time
t1 iff tr1 was called from the external environment at t1. A start
event, Start(tr1, t1), occurs for a transition tr1 at a time t1 iff tr1
fires at t1. Similarly, an end event, End(tr1, t1), occurs iff tr1
ends at t1. Finally, a change event, Change(v1, t1), occurs for a
variable v1 at a time t1 iff v1 changes value at t1. Note that
change events can only occur when an end event occurs for some
transition.

87

 3

Using these operators, a variety of complex properties can be
expressed. For example, the schedule of the Judge process states
that whenever Score is called from the external environment (i.e. a
human judge presses the score button for a particular boxer on the
scoring panel), Score will start immediately. This property can
only be guaranteed when the environment holds, which states that
consecutive calls to Score will be separated by 2 * Window time
units and that calls to Score will only occur when the match is in a
round. An introduction and complete overview of the ASTRAL
language can be found in [2].

ASTRAL is supported by the ASTRAL Software Development
Environment (SDE) [12], which allows the user to edit and
manage complex specifications as well as providing support for
their analysis. In particular, proof obligations can be
automatically produced from specifications, and proofs are
supported by both model checking and deductive facilities. The
model checker can check the critical requirements of a particular
instance of a specification over a finite time interval. ASTRAL
has been encoded into the language of the PVS theorem prover
[3] to support deductive reasoning.

3. PROCESS CLASSIFICATION
The goal of process classification is to identify detectable
differences in process behavior that lead to significantly different
styles of proofs. By examining the proofs of the testbed systems,
three such process classifications were identified that can be
statically recognized. These classifications are multi-threaded
processes, iterative single-threaded processes and simple single-
threaded processes. Each of these classifications is discussed in
the following subsections.

3.1 Multi-Threaded Processes
A multi-threaded process is a process in which multiple threads of
execution are occurring at any given time in the process. For
example, consider the central control process of the phone system.
In this case, the “threads” are the servicing of each phone in the
central control’s area. Each thread consists of a chain of actions
that occurs during the evolution of a call for a particular phone.
The central control can only perform one stage of a single phone’s
thread at any given time. The phone threads of all the phones are
interleaved with each other in the central control. Figure 2 shows
the threads of two phones and how they might be interleaved on
the central control. The labels GDT, PD, PC, etc. are
abbreviations for the central control transitions Give_Dial_Tone,
Process_Digit, Process_Call, Enable_Ringback,
Disable_Ringback_Pulse, Start_Talk, and Terminate_Call.

The key fact about multi-threaded processes is that there are
multiple independent threads interleaved on the process, thus at
any given time, any combination of thread stages may be enabled
in the set of threads. This means that there is essentially no way
to guarantee a real-time response property of a single thread
unless some set of restrictions is placed on the behavior of the
complete set of threads. Namely, it is necessary to guarantee that
the thread will not be “starved” by the other threads. This is
usually achieved by choosing an appropriate scheduling policy
(e.g. fixed priority, FIFO, round robin, etc.) and by placing
various limitations on the number of transitions enabled or threads
that require service at any given time. In multi-threaded operating
systems, the scheduling policy specifies how to select the next
thread to execute on the processor when multiple threads are
waiting for service. In ASTRAL, a scheduling policy can be
implicitly specified by the transition selection clause, which states
how to select the next transition to execute on a process when
multiple transitions are enabled.

Figure 1. The Judge process

PROCESS SPECIFICATION Judge ENVIRONMENT
IMPORT (EXISTS t: Time

Pos_Real, Boxer, Time_Keeper.In_Round, (t ≤ Now
Non_Negative, Window, Time_Keeper & Call2(Score, t))

EXPORT → Call(Score) - Call2(Score) ≥ 2 * Window)
Score, Score_Card & (Call(Score, now)

CONSTANT → Time_Keeper.In_Round)
Score_Dur: Pos_Real TRANSITION Score(B: Boxer)

VARIABLE ENTRY [TIME: Score_Dur]
Score_Card(Boxer): Non_Negative Time_Keeper.In_Round

AXIOM & FORALL t: Time
Score_Dur < Window (t < Now

INITIAL & past(Start(Score, t) , t)
FORALL B: Boxer → Now - t > Window)

(Score_Card(B) = 0) EXIT
SCHEDULE Score_Card(B) BECOMES

Call(Score, now) Score_Card′(B) + 1
→ Start(Score, now) END Judge

88

 4

���

��

��

��

��

��

��

��

��

���

����

���

����

	�

��

�� �� �� �� ��� ��� 	�

��� �� �� �� �� ���� ���� ��

������

������

��
�������
���

Figure 2. Interleaved phone threads on the central control

After the scheduling policy has been determined and the appropriate
limits have been found, an estimate of the maximum response time
can be derived based on the scheduling policy of the process. For
example, in fixed priority scheduling, the maximum response time
can be derived as shown in figure 3. In this case, there may be some
arbitrary transition firing when all the requests are made. Thus,
before the fixed priority scheduling policy takes effect, there may be
a delay of up to the duration of the slowest transition. In the figure,
there are n - 1 priority levels that are higher than the priority level of
the thread associated with the requirement of the property. Thus,
before the thread of interest can fire, a bounded number of threads at
each of the n - 1 higher priority levels can potentially fire.

3.2 Iterative Single-Threaded Processes
An iterative single-threaded process is a process that repeatedly
executes a sequence of actions in a countable fashion. That is, a
similar sequence of actions is performed during each iteration. Note
that almost all ASTRAL processes are cyclic in some way. In an
iterative process, however, there is some record of how many
iterations have been performed that affects the behavior of the
process. The count may represent floors in a building, loop counts
in a program, etc.

For example, consider the Elevator process of the elevator control
system. The Elevator process iterates over the position of the
elevator car in the building. At each floor, the elevator performs a
specific sequence of actions depending on the position, the direction
of movement, and the requests outstanding in the building. For
example, if the elevator just arrived at a floor i moving up and there
are requests on floors i and i+1, the sequence of actions would be
door_open, door_stop, door_close, door_stop, move_up, and arrive.

The first thing to notice in iterative single-threaded processes is that
in order for a response requirement to be guaranteed, the maximum
time that can be spent in any iteration must be bounded. The other
thing is that the number of full iterations between when the context
holds and when the requirement is to hold must also be bounded.
Thus, the proofs of response requirements can be performed by
determining these bounds, deriving the maximum response time
accordingly, and then checking the derived time against the required
time. For a property in which the requirement must hold within a
given period of time after the context holds, the maximum response
time can be derived as shown in figure 4. First, it is necessary to
derive how long it takes to reach a full iteration from when the
context holds. Then, the maximum time of each full iteration is
calculated and multiplied by the maximum number of full iterations.
Finally, how long it takes to reach a time at which the requirement
holds from the last full iteration is derived.

3.3 Simple Single-Threaded Processes
The simple single-threaded processes are the processes that are
neither multi-threaded processes nor iterative single-threaded
processes. These processes do not necessarily exhibit “simple”
behavior. Rather, a cycle of a simple single-threaded process’s
execution represents the interval over which properties in the
process must be proved. This is in contrast to an iterative single-
threaded process in which a property may need to be proved over
multiple cycles of the process’s execution. An example of a simple
single-threaded process is the press component of the production
cell, which cyclically moves from a loading position to a forging
position to an unloading position as shown in figure 5.

���

������

�����������
��
���
�
������ �������
������

���

�������
�����
����

��� ���

����
�������
���

������

����
���

���

�������������
���

�������
�����
����

�������������
���

�������
�����
����

�������������
���

�����

����

�����
���

������

����
���
�����!"���
�����
����

�������!"�������
����
Figure 3. Deriving the maximum response time for fixed priority scheduling

89

 5

3.4 Testbed Process Classifications
Table 1 shows the process classification of each process in the
testbed systems, where MT is multi-threaded, IST is iterative single-
threaded, and SST is simple single-threaded. The numbers were
obtained using the process classification component of the ASTRAL
SDE. The process classifier automatically classifies a process by
examining its transitions and attempting to identify those with multi-
threaded or iterative behavior, which indicates that the process as a
whole is multi-threaded or iterative. A large percentage of the total
number of processes were of the more straightforward simple single-
threaded variety meaning that the complexities associated with the
other two types can be avoided in most cases.

4. PROPERTY CLASSIFICATION
To describe the property classifications, it is first necessary to
introduce a few definitions. Every first-order logic formula can be
written in the form “context → requirement”, where the context is a
conjunction of unnegated conditions and the requirement is a
disjunction of unnegated conditions. The context describes the
conditions under which the requirement must hold. That is, the
requirement is not required to hold under any conditions in which
the context does not hold. A property may have an empty context,
“TRUE → requirement”, or an empty requirement, “context →
FALSE”.

The context times are the times that are referenced in some timed
operator expression (i.e. past, change, start, end, or call in
ASTRAL) in the conditions of the context. In languages other
than ASTRAL, this definition would reflect the differences in
timed operators. These times may be concrete times such as now
- 5 (in ASTRAL), or symbolic times such as a quantified time
variable t that has been restricted in some way. The requirement

times are the times that are referenced in a similar expression in
the conditions of the requirement. For example, consider the
following property of the Speed_Control process of the cruise
control system.

 control_dur ≤ input_dur
& now ≥ input_dur + input_dur
& past(maintaining_speed, now - input_dur - input_dur)
& call(set_brake_pedal, now - input_dur - input_dur)

→ EXISTS t: Time
 (now - input_dur - input_dur ≤ t
 & t ≤ now
 & ~past(maintaining_speed, t))

In this property, the only context time is now - input_dur -
input_dur and the only requirement time is t. Properties can be
classified based on the forms and the times of their context and
requirement. The following sections describe these
classifications, which are untimed, timed forward safety, timed
backward safety, timed forward liveness, and timed backward
liveness. Every ASTRAL property falls into one of these five
classifications.

4.1 Untimed Properties
An untimed property is a property in which the only context and
requirement time is the current time (i.e. now in ASTRAL). The
most common form of an untimed property is one that consists
solely of boolean combinations of local state variables. For
example, the property shown below is an untimed property of the
Controller process of the stoplight control system.

FORALL d: direction
 (circle(d) = green
→ arrow(opp(d)) = red)

���

�����
��
����
��

�����
��
������������
��
����
��

�����������
��
���
�
������ �������
������

���#�������

#�����
��
���

���������
#�������
�

���
��#���

#�����
��
���

Figure 4. Deriving the maximum response time

Figure 5. A cycle of the production cell press

90

 6

In this property, whenever the circle of a direction is green, the
arrow of the opposing direction must be red.

This property classification is significant because it allows the use
of frame axioms [1], which assert that elements of the state that
are not explicitly changed to a new value in the postcondition of a
transition remain unchanged from the precondition. Normally in
timed transition systems, the current time is an element of the
state. Thus, since time is continuously changing, it is not possible
to use a frame axiom because even though a property may hold
when a transition started and when it ended, the property may
have been violated in between due to a change in time. Untimed
properties do not depend on the current time, however, thus they
cannot be violated while a transition is executing, but only when a
transition changes the state. This means that it is sometimes
possible to prove these properties simply by examining the entry
and exit assertions of each transition and assuring that (1) any
time the context is set to true in an exit assertion, the requirement
is set to true in the exit assertion or is true in the entry assertion
and is unchanged in the exit assertion and (2) any time the
requirement is set to false in an exit assertion, the context is set to
false in the exit assertion or is false in the entry assertion and is
unchanged in the exit assertion. For example, consider the
maintain_speed transition of the Speed_Control process of the
cruise control system.

TRANSITION maintain_speed
 ENTRY [TIME: input_dur]
 cruise_on
 & ~maintaining_speed
 EXIT
 cruise_throttle = throttle′
 & desired_speed = the_speedometer.speed
 & maintaining_speed

This transition preserves the property “maintaining_speed →
cruise_on” because when the context is set to true in the exit
assertion (i.e. maintaining_speed is asserted), the requirement is
true in the entry assertion (i.e. cruise_on is asserted) and is
unchanged in the exit assertion. This procedure has been fully
automated in the ASTRAL theorem prover [10].

4.2 Timed Properties
A timed property is either a safety property or a liveness property
and is either forward or backward. In a safety property, the
requirement must hold at all times in an interval of time. In a
liveness property, the requirement must hold at least once in an
interval of time. If a property is forward, then there is some
context time that is less than or equal to every requirement time.
If a property is backward, then there is some requirement time that
is less than or equal to every context time.

Table 1. Process classifications of testbed systems

System Process Type MT IST SST
Bakery Algorithm Proc X
Cruise Control Accelerometer X
 Speed_Control X
 Speedometer X
 Tire_Sensor X
Elevator Elevator X
 Elevator_Button_Panel X
 Floor_Button_Panel X
Olympic Boxing Judge X
 Tabulate X
 Timer X
Phone Central_Control X
 Phone X
Production Cell P_Crane X
 P_Deposit X
 P_Deposit_Sensor X
 P_Feed X
 P_Feed_Sensor X
 P_Press X
 P_Robot X
 P_Table X
Railroad Crossing Gate X
 Sensor X
Stoplight Controller X
 Sensor X

Total 23 2 4 19

91

 7

For example, the property shown below is a forward liveness
property of the P_Robot process of the production cell.

FORALL t: Time
 (start(Arm1_Drop, now)
 & end(Arm1_Drop, t)
→ EXISTS t1: Time
 (t < t1
 & t1 < now
 & end(Arm2_Pickup, t1)))

This property states that between any two consecutive drops of an
object by arm one, arm two must pickup an object. This property
is a forward property because there is context time, t, that is less
than or equal to every requirement time. It is a liveness property
because the requirement is only required to hold once in the
interval (t, now), namely at t1.

As another example, the property shown below is a backward
safety property of the Sensor process of the railroad crossing.

FORALL t: Time
 (change(train_in_R, now)
 & ~train_in_R
 & now - ((dist_R_to_I + dist_I_to_out)
 / max_speed - response_time) ≤ t
 & t < now
→ past(train_in_R, t))

This property states that whenever a sensor stops reporting a train
in the region, the sensor has been reporting a train for at least the
past (dist_R_to_I + dist_I_to_out) / max_speed - response_time
time. This property is a backward property because there is a
requirement time, t, that is less than or equal to every context
time. It is a safety property because the requirement is required to
hold at all times in the interval [now - ((dist_R_to_I +
dist_I_to_out) / max_speed - response_time), now).

These classifications correspond closely to the temporal logic
operators presented in [16]. Forward safety and forward liveness
correspond to the henceforth and eventually operators, while
backward safety and backward liveness correspond to the has-
always-been and once operators.

The distinction between proving forward properties and proving
backward properties occurs due to nondeterminism. When a
forward property is proved, all possible nondeterministic choices
that can be made in the system, such as events occurring or not

occurring in the external environment and choices between which
transition will fire, must be considered. When a backward
property is proved, however, the path along which the system has
evolved has already been determined; thus, nondeterminism is
usually less of a factor.

The distinction between proving liveness properties and proving
safety properties is that for liveness properties, the prover must
show all of the exact sequences of events that occur from the time
the context holds until the time the requirement holds in order to
assure that the required event will occur in every given scenario.
When proving a safety property, however, it can be assumed that
some “bad event” has occurred and then the conditions that hold
in the proof interval can be used to produce a contradiction. In
general, this is usually easier than showing all possible evolutions
of the system since much of the detail of the executions can be
abstracted away.

4.3 Testbed Property Classifications
Table 2 shows the number of each type of property in each of the
testbed systems, where U is untimed, F/B is forward/backward,
and S/L is safety/liveness. The numbers were obtained by
completely splitting all of the formulas of each specification into
conjunctive normal form and then invoking the property
classification component of the ASTRAL SDE on each split. The
property classifier automatically classifies a formula by
transforming it to a canonical form and then analyzing its
quantifiers and context/requirement times appropriately. The
properties are broken down into the properties that occur in the
requirements sections (i.e. invariant, schedule, and constraint
clauses) and those that occur in the assumptions sections (i.e.
environment and imported variable clauses). The results indicate
that a large portion of the properties are untimed properties
meaning that simpler techniques can be applied to these properties
and more concentration can be given to the more difficult
properties, which are the timed properties.

5. TRANSITION CLASSIFICATION
While process and property classifications are high-level
classification schemes that identify distinct proof styles, a
transition classification is a low level scheme that facilitates steps
within each proof. Namely, a transition classification can be used
to determine how the next or previous transition is found in a
particular execution and how much time elapses or has elapsed
since that transition fired.

Table 2. Property classifications of testbed systems

System Requirements Assumptions Total
 U FS FL BS BL U FS FL BS BL
Bakery Algorithm 11 1 0 0 1 3 1 0 0 1 18
Cruise Control 5 0 2 0 0 0 0 0 0 0 7
Elevator 8 0 8 0 3 2 9 0 0 3 33
Olympic Boxing 8 2 0 0 1 1 5 0 0 0 17
Phone 26 14 0 0 0 0 8 0 0 7 55
Production Cell 32 3 6 0 8 0 1 4 0 4 58
Railroad Crossing 0 7 0 1 0 0 2 0 1 0 11
Stoplight 17 4 0 0 2 0 0 0 0 0 23

Total 107 31 16 1 15 6 26 4 1 15 222

92

 8

In ASTRAL, the enablement of a transition depends on four
factors: the local state, the imported state, the external
environment, and the current time. The local state includes the
values of local variables and the start and end times of local
transitions. The imported state includes the values of variables
imported from other processes and the start and end times of
imported transitions. All transitions depend on one or more of
these factors. For example, consider the two transitions of the
bakery algorithm specification shown below.

TRANSITION set_choose
ENTRY [TIME: exec_time]

now ≥ delay
& ~choosing
& number = 0

EXIT
choosing

TRANSITION for_loop

ENTRY [TIME: exec_time]
next_i ≤ n_procs

& ~choosing
& number ≠ 0
& ~procs[next_i].choosing
& (procs[next_i].number = 0

| number < procs[next_i].number
| number = procs[next_i].number
& FORALL j: procs_int

(procs[j] = self
→ j ≤ next_i))

EXIT
next_i = next_i′ + 1

The set_choose transition depends on the local state (choosing
and number) and the current time (Now). The for_loop transition
also depends on the local state (next_i, choosing, and number),
but in place of the current time, it depends on the other processes
in the system (procs[next_i].number) instead.

A transition is classified based on which factors its enablement is
dependent. There are seven classifications corresponding to the
possible combinations of the imported state (O), external
environment (E), and current time (T) factors plus a classification
for transitions that only depend on the local state (L). The
set_choose transition is of type T and the for_loop transition is of
type O. Table 3 shows the number of transitions of each
classification that appear in the testbed systems. This information
was obtained automatically using the transition classification

component of the ASTRAL SDE, which examines each transition
for the different factors.

These classifications are significant because they can be used to
help determine the delay between any two consecutive transitions
on the same process instance, which in turn can be used to
determine the execution time of arbitrary transition sequences. To
determine the delay between two consecutive transitions tr1 and
tr2, tr2 is first classified. If tr2 depends only on local variables,
tr2 must fire immediately after tr1. If this were not the case, then
a contradiction can be achieved as follows. Let t1 be the time that
tr1 fired and t2 be the time that tr2 fired. In this case, t2 - t1 >
Duration(tr1) and tr2 is not enabled at t1 + Duration(tr1) or else
by the semantics of ASTRAL, tr2 would have fired. Since tr2
does eventually fire at t2, however, it is enabled at t2. Since tr2
depends only on the local state, there must have been a change to
the local state between t1 + Duration(tr1) and t2. This means that
there was either a start, an end, and/or a change to a local variable.
Since tr1 and tr2 were assumed to be consecutive, however, no
other transition could have started or ended in between, and as a
consequence, no changes to local variables could have occurred.
This is a contradiction, so tr2 must fire immediately after tr1.

If tr2 depends on more than just the local state, the delay between
tr1 and tr2 is more difficult to determine. If tr2 additionally
depends on the current time, the history of the system must be
examined to determine if and when the events constrained by the
current time have occurred. In many cases, the events will be
related to the execution of tr1. For example, a common instance
of this type is “now - End(tr1) ≥ delay1”. Another common
instance is “now - Change(v) ≥ delay1” where v is a variable set
by tr1. In these cases, the delay between tr1 and tr2 is equal to
delay1. If the events are not related to tr1, however, more in-
depth analysis of the history of the system must be performed.

If tr2 depends on the environment, the start of tr2 is delayed until
a call to tr2 is generated by the external environment. In this case,
it is necessary to examine the environment clause for restrictions
on calls to tr2. If there are no such restrictions, then the delay
between tr1 and tr2 can be arbitrarily large. If there are
restrictions, however, then it is necessary to examine the history
of the system to determine when calls can or will occur to
compute the delay between tr1 and tr2. Similarly, if tr2 depends
on other processes, the start of tr2 is delayed until imported
variables have the appropriate values and/or imported transitions
have occurred at the appropriate times. In this case, the imported
variable clause must be examined in a similar fashion to that of
the environment clause. If tr2 depends on combinations of the

Table 3. Transition classifications of testbed systems

System L E O T EO ET OT EOT Total
Bakery Algorithm 4 0 1 1 0 0 0 0 6
Cruise Control 2 9 2 1 0 0 0 0 14
Elevator 0 3 4 3 0 0 2 0 12
Olympic Boxing 0 0 2 2 0 0 1 1 6
Phone 0 2 16 0 7 0 5 0 30
Production Cell 14 0 11 20 0 0 10 1 56
Railroad Crossing 0 1 2 3 0 0 0 0 6
Stoplight 0 2 4 0 0 0 18 0 24

Total 20 17 42 30 7 0 36 2 154

93

 9

current time, the environment, and other processes, all of the
appropriate clauses must be examined.

6. RELATED WORK
Dwyer et al. [5] developed a set of property classifications based
on a large number of linear temporal logic specifications collected
from the literature. The classifications include absence, existence,
universality, precedence, and response. It was found that almost
all of the property specifications collected fall into one of these
classifications. The goal of these classifications is to facilitate the
creation and reuse of property specifications by providing a set of
templates that can be instantiated appropriately during
specification. This is in contrast to the property classifications
presented in this paper, which were designed to be automatically
recognizable after a specification has already been written to
differentiate between distinct proof patterns. The two approaches,
however, are not mutually exclusive. In fact, they can be used in
a complementary fashion. For writing specifications, the template
classification schemes can be used, which were developed with
creation and reuse in mind, but were not developed to be statically
recognizable or to distinguish between distinct proof styles. For
analyzing specifications, the classification schemes of this paper
can be used, which are statically recognizable and distinguish
between distinct proof styles, but may not be intuitive or specific
enough to be used as design templates.

In a similar fashion, Shaw and Garlan [19] developed a taxonomy
where systems are classified based on different types of system
components and the read/write interactions between them.
Classifications in the taxonomy include pipes and filters, object-
orientation, implicit invocation, layered systems, repositories,
interpreters, and process control. The purpose of these
classifications is to facilitate the design and reuse of software
architectures by identifying the most common patterns that occur
in practice. This classification scheme is supported by an
automatic classification tool developed by Dean and Cordy [4]. A
system is first specified as a graph, where nodes represent
different components in the system and edges represent different
types of connections between components. Node types include
tasks, tables, random access repositories, and files. Edge types
include streams, memory accesses, messages, procedures,
invocations, and productions. Once the graph for a system has
been specified, a pattern-matching algorithm determines the type
of the system based on the Shaw/Garlan taxonomy. Although
these classifications can be automatically identified, they do not
differentiate enough between distinct proof styles. In other words,
systems that have identical classifications may need significantly
different tools and techniques to discharge their proofs.

Henzinger et al. [8] provide guidance as to how proofs can be
constructed. In this work, proof methodologies based on temporal
logic reasoning are discussed for timed transition systems. Two
different specification styles are identified and different proof
techniques are presented for each. In the first specification style,
real-time properties are expressed using time-bounded temporal
operators. Proof rules are provided for proving bounded-
invariance and bounded-response properties. In the second
specification style, real-time properties are expressed using an
explicit clock variable. Since the clock variable can be thought of
as just an ordinary variable, untimed proof techniques are used to
discharge proofs in these systems. These classifications are at a

much higher level than the classifications of this paper and cannot
be used to direct the proofs at the level needed by a human prover.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented process, property, and transition
classification schemes for real-time systems that can be used to
assist in the analysis of these systems. By basing the classification
schemes on actual specifications and their associated proofs, the
likelihood of getting guidelines and tools that will help the user in
analyzing and proving other specifications is increased. A large
number of the proofs of the testbed systems were proved by hand
with the assistance of the classification schemes and proof
techniques, which became available incrementally as more and
more proofs were performed. Over half of the requirements were
completely proved in PVS. A systematic methodology for the
analysis of real-time systems based on these classification
schemes can be found in [11].

In general, more example systems need to be specified and proved
to determine whether the classification schemes presented in this
paper are sufficient to classify all real-world systems or whether
other useful classifications exist. Although the classification
schemes developed were based on ASTRAL specifications, most
of the descriptions did not rely on exclusively ASTRAL concepts
and terminology, but instead were discussed in a high level
fashion. Thus, the authors feel that these schemes are also
applicable to other real-time concurrent specification languages.
For languages similar to ASTRAL, such as the Timed Automaton
Model [15] and the Timed Transition Model [18], these
classifications are readily applicable. For other languages, the
classification schemes can be applied by taking differences in
language constructs into account. Process classification
corresponds to the classification of the active entities of the
language, whether they be automata, objects, etc. Property
classification is similar across most real-time languages with
slight differences for the logic used and the operators available.
Finally, transition classification corresponds to the classification
of the state changes of a language, whether they be transitions,
actions, functions, etc. Further investigation is necessary to
validate that the classifications are applicable in general.

The classification schemes discussed in this paper have been
incorporated into the ASTRAL SDE. Queries to display process
and transition classification information are available in the their
respective browsers, and the property classification information is
automatically displayed whenever the formula splitter tool is
invoked on a formula. In addition, fully automated theorem
prover strategies are available for properties classified as untimed
properties [10]. Finally, the transition classification information
is used by the transition sequence generator [10] to estimate the
running times of each transition sequence that is generated.

8. ACKNOWLEDGMENTS
This research was partially supported by NSF Grant No. CCR-
9204249.

9. REFERENCES
[1] Borgida, A., J. Mylopoulos, and R. Reiter, “On the Frame

Problem in Procedure Specifications”, IEEE Transactions on
Software Engineering, 21(10), 785-198 (Oct., 1995).

94

 10

[2] Coen-Porisini, A., C. Ghezzi, and R.A. Kemmerer,
“Specification of Realtime Systems Using ASTRAL”, IEEE
Transactions on Software Engineering, 23(9), 572-598
(Sept., 1997).

[3] Crow, J., S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A
Tutorial Introduction to PVS”, Proc. Workshop on
Industrial-Strength Formal Specification Techniques, (Apr.,
1995).

[4] Dean, T.R. and J.R. Cordy, “A Syntactic Theory of Software
Architecture”, IEEE Transactions on Software Engineering,
21(4), 302-333 (Apr., 1995).

[5] Dwyer, M.B., G.S. Avrunin, and J.C. Corbett, “Patterns in
Property Specifications for Finite-State Verification”, Proc.
21st Int. Conference on Software Engineering, 411-420,
(May, 1999).

[6] Filman, R.E. and D.P. Friedman, Coordinated Computing:
Tools and Techniques for Distributed Software, McGraw-
Hill, New York, NY, (1984).

[7] Heitmeyer, C. and N. Lynch, “The Generalized Railroad
Crossing: a Case Study in Formal Verification of Real-Time
Systems”, Proc. 15th Real-Time Systems Symposium, 120-
131 (Dec., 1994).

[8] Henzinger, T.A., Z. Manna, and A. Pnueli, “Temporal Proof
Methodologies for Timed Transition Systems”, Information
and Computation, 112(2), 273-337 (Aug., 1994).

[9] Kolano, P.Z., “The ASTRAL Specifications of 8 Real-Time
Systems”, Technical Report TRCS99-08, Computer Science
Department, University of California, Santa Barbara, CA
(Mar., 1999).

[10] Kolano, P.Z., “Proof Assistance for Real-Time Systems
Using an Interactive Theorem Prover”, Proc. 5th Int. AMAST
Workshop on Formal Methods for Real-Time and
Probabilistic Systems, 315-333 (May, 1999).

[11] Kolano, P.Z., “Tools and Techniques for the Design and
Systematic Analysis of Real-Time Systems”, Ph.D. Thesis,
University of California, Santa Barbara, CA (Dec., 1999).

[12] Kolano, P.Z., Z. Dang, and R.A. Kemmerer, “The Design
and Analysis of Real-Time Systems Using the ASTRAL
Software Development Environment”, Annals of Software
Engineering, 7, 177-210 (1999).

[13] Lamport, L., “A New Solution of Dijkstra’s Concurrent
Programming Problem”, Communications of the ACM,
17(8), 453-455 (Aug., 1974).

[14] Lewerentz, C. and T. Lindner, eds., Formal Development of
Reactive Systems: Case Study Production Cell, Springer-
Verlag, New York, NY (1995).

[15] Lynch, N. and F. Vaandrager, “Forward and Backward
Simulations for Timing-Based Systems”, Proc. REX
Workshop on Real-Time Theory in Practice, 397-446 (June,
1991).

[16] Manna, Z. and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, New York, NY
(1992).

[17] Official 1996 Olympic Web Site,
http://www.atlanta.olympic.org (1996).

[18] Ostroff, J.S., Temporal Logic for Real-Time Systems,
Research Studies Press, Taunton, UK (1989).

[19] Shaw, M. and D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall,
Upper Saddle River, NJ (1996).

[20] Ward, P.T. and S.J. Mellor. Structured Development for
Real-Time Systems, Yourdon Press, New York, NY (1985).

�

95

